COMBINATORICA Bolyai Society – Springer-Verlag

RESTRICTIONS ON SMALLEST COUNTEREXAMPLES TO THE 5-FLOW CONJECTURE

MARTIN KOCHOL*

Received December 30, 2002

Using counting arguments, we show that every smallest counterexample to Tutte's 5-flow Conjecture (that every bridgeless graph has a nowhere-zero 5-flow) has girth at least 9.

1. Introduction

A graph admits a nowhere-zero k-flow if its edges can be oriented and assigned numbers $\pm 1, \ldots, \pm (k-1)$ so that for every vertex, the sum of the values on incoming edges equals the sum on the outgoing ones. It is well-known that a graph with a bridge (1-edge-cut) does not have a nowhere-zero k-flow for any $k \geq 2$ (see, e. g., [3,9,15]). The famous 5-flow conjecture of Tutte [13] is that every bridgeless graph has a nowhere-zero 5-flow.

Let G be a counterexample to the 5-flow conjecture of the smallest possible order. It is well-known (see cf. Jaeger [3] and Zhang [15]) that G must be a snark which is a cyclically 4-edge-connected cubic graph without an edge-3-coloring and with girth (the length of the shortest cycle) at least 5. Note that a graph is $cyclically\ k\text{-edge-connected}$ if deleting fewer than k edges does not result in a graph having at least two components containing cycles. By [11], G must be cyclically 6-edge-connected and by Celmins [1], G has no circuit of length ≤ 6 (see also [8]).

Mathematics Subject Classification (2000): 05C15

^{*} This work was supported by Science and Technology Assistance Agency under the contract No. APVT-51-027604 and partially by VEGA grant 2/4004/04. The author was also affiliated at the School of Mathematics, Georgia Institute of Technology, the Department of Mathematics, Vanderbilt University.

Suppose that H is a graph with exactly $n \geq 2$ vertices of degree 2 and all other vertices of degree 3. We show that if a matrix M_H , characterized by H, has the same rank as another specified matrix M_n , then H cannot be a subgraph of G. In particular, using computer we prove that if H is a circuit of order $2 \leq n \leq 8$, then M_H and M_n have the same rank. Thus G has girth at least 9. Note that it is interesting to find the lower bounds for the girth of G, because we do not know whether there exists a cyclically 6-edge-connected snark with girth more than 6 (see [2,4-6,9,10]).

2. Preliminaries

The graphs considered in this paper are all finite and unoriented. Multiple edges and loops are allowed. If G is a graph, then V(G) and E(G) denote the sets of vertices and edges of G, respectively. By a multi-terminal network, briefly a network, we mean a pair (G,U) where G is a graph and $U = (u_1, \ldots, u_n)$ is an ordered set of pairwise distinct vertices of G. The vertices u_1, \ldots, u_n are called the outer vertices of (G,U) and the others are called the inner vertices of (G,U).

To each edge connecting u and v (including loops) we associate two distinct (directed) arcs, one directed from u to v, the other directed from v to u. If one of these arcs is denoted x then the other is denoted x^{-1} . Let D(G) denote the set of such arcs, so that |D(G)| = 2|E(G)|. If $v \in V(G)$, then $\omega_G(v)$ denotes the set of arcs of G directed from v to $V(G) \setminus \{v\}$.

If G is a graph and A is an additive Abelian group, then an A-chain in G is a mapping $\varphi: D(G) \to A$ such that $\varphi(x^{-1}) = -\varphi(x)$ for every $x \in D(G)$. Furthermore, the mapping $\partial \varphi: V(G) \to A$ such that $\partial \varphi(v) = \sum_{x \in \omega_G(v)} \varphi(x)$ $(v \in V(G))$ is called the boundary of φ . An A-chain φ in G is called nowherezero if $\varphi(x) \neq 0$ for every $x \in D(G)$. If (G, U) is a network, then an A-chain φ in G is called an A-flow in (G, U) if $\partial \varphi(v) = 0$ for every inner vertex v of (G, U).

By a (nowhere-zero) A-flow in a graph G we mean a (nowhere-zero) A-flow in the network (G,\emptyset) . Our concept of nowhere-zero flows in graphs coincides with the usual definition of nowhere-zero flows as presented in Jaeger [3]. By Tutte [13,14], a graph has a nowhere-zero k-flow if and only if it has a nowhere-zero A-flow for any Abelian group A of order k. Thus the study of nowhere-zero 5-flows is, in a certain sense, equivalent to the study of nowhere-zero \mathbb{Z}_5 -flows. We use this fact and deal only with \mathbb{Z}_5 -flows because they are easier to handle than integral flows.

A network (G,U), $U=(u_1,\ldots,u_n)$, is called *simple* if the vertices u_1,\ldots,u_n have degree 1. If φ is a nowhere-zero \mathbb{Z}_5 -flow in (G,U), then

denote by $\partial \varphi(U)$ the *n*-tuple $(\partial \varphi(u_1), \dots, \partial \varphi(u_n))$. By simple counting, $\sum_{i=1}^n \partial \varphi(u_i) = -\sum_{v \in V(G) \setminus U} \partial \varphi(v) = 0$ (see [7,9]). Furthermore, $\partial \varphi(u_i) \neq 0$ because u_i has degree 1 $(i=1,\dots,n)$. Thus $\partial \varphi(U)$ belongs to the set

$$S_n = \{(s_1, \dots, s_n); \ s_1, \dots, s_n \in \mathbb{Z}_5 - \{0\}, \ s_1 + \dots + s_n = 0\}.$$

For every $s \in S_n$, denote by $F_{G,U}(s)$ the number of nowhere-zero \mathbb{Z}_5 -flows φ in (G,U) satisfying $\partial \varphi(U) = s$.

A partition $P = \{Q_1, \ldots, Q_r\}$ of the set $\{1, \ldots, n\}$, $n \geq 2$, is called *proper* if each of Q_1, \ldots, Q_r has cardinality at least 2. Let \mathcal{P}_n denote the set of proper partitions of $\{1, \ldots, n\}$ and let $p_n = |\mathcal{P}_n|$. If $s = (s_1, \ldots, s_n) \in S_n$, $P = \{Q_1, \ldots, Q_r\} \in \mathcal{P}_n$, and $\sum_{i \in Q_j} s_i = 0$ for $j = 1, \ldots, r$, then we say that P and s are compatible. (For example, $\{\{1, 2\}, \{3, 4, 5\}\} \in \mathcal{P}_5$ is compatible with $(1, 4, 1, 2, 2) \in S_5$.) In this paper, we consider \mathcal{P}_n as an p_n -tuple $(P_{n,1}, \ldots, P_{n,p_n})$. For any $s \in S_n$, denote by $\chi_n(s)$ the integral vector $(c_{s,1}, \ldots, c_{s,p_n})$ so that $c_{s,i} = 1$ $(c_{s,i} = 0)$ if $P_{n,i}$ is (is not) compatible with s, $i = 1, \ldots, p_n$.

Let (G,U), $U=(u_1,\ldots,u_n)$, be a simple network and \mathcal{H} be the set of minors of G which can be obtained by either contracting or deleting each edge of G which is not adjacent to a vertex in U. Thus each graph $H \in \mathcal{H}$ naturally corresponds to a partition $\pi(H)$ of U. By repeatedly applying Tutte's deletion/contraction formula [13,14] for enumerating nowhere-zero \mathbb{Z}_5 -flows, one sees that the function $F_{G,U}(s)$ is a linear combination of the functions in $\{F_{H,U}(s): H \in \mathcal{H}, \pi(H) \in \mathcal{P}_n\}$. We may restate this observation as follows (see [11] for a detailed presentation).

Lemma 1. Let (G,U), $U=(u_1,\ldots,u_n)$, be a simple network. Then there exist integers x_1,\ldots,x_{p_n} such that for every $s\in S_n$, $F_{G,U}(s)=\sum_{i=1}^{p_n}c_{s,i}x_i$ where $(c_{s,1},\ldots,c_{s,p_n})=\chi_n(s)$.

3. The main result

Let V_n be the linear hull of $\{\chi_n(s); s \in S_n\}$ in \mathbb{R}^{p_n} .

Let H be a graph having exactly $n (\geq 2)$ vertices of degree 2, namely v_1, \ldots, v_n , and all other vertices of degree 3. Add to H vertices u_1, \ldots, u_n and edges $v_1 u_1, \ldots, v_n u_n$. Denote the resulting graph by H'. Consider the simple network (H', U), $U = (u_1, \ldots, u_n)$. Let $S_H = \{s \in S_n; F_{H', U}(s) > 0\}$ and V_H be the linear hull of $\{\chi_n(s); s \in S_H\}$ in \mathbb{R}^{p_n} . Then $V_H \subseteq V_n$.

Lemma 2. If $V_H = V_n$, then H cannot be a subgraph of a smallest counterexample to the 5-flow conjecture.

Proof. Let G be a counterexample to the 5-flow conjecture of the smallest possible order. As pointed out before, G is a 3-connected cubic graph. Suppose that H is a subgraph of G having minimum degree 2. Let $v_1, \ldots, v_n, u_1, \ldots, u_n$ and H' be as above (notice that all these vertices are pairwise different and $n \ge 2$).

Subdivide each edge from $E(G)\backslash E(H)$ having both ends among v_1,\ldots,v_n by a new vertex of degree 2 and denote the resulting graph by G'. Let e_1,\ldots,e_n be the edges from $E(G')\backslash E(H)$ incident with v_1,\ldots,v_n , respectively. These edges are pairwise different. Take I=G'-V(H). Let v'_1,\ldots,v'_n be the ends of e_1,\ldots,e_n , respectively, which belong to V(I) (notice that v'_1,\ldots,v'_n do not need to be pairwise different). Let I' be the graph arising from I after adding (pairwise different) vertices w_1,\ldots,w_n and edges $w_1v'_1,\ldots,w_nv'_n$. Consider the simple network $(I',W), W=(w_1,\ldots,w_n)$.

If there exists $s \in S_n$ such that $F_{H',U}(s)$, $F_{I',W}(s) > 0$, then (H',U) and (I',W) have nowhere-zero \mathbb{Z}_5 -flows φ_1 and φ_2 , respectively, such that $\partial \varphi_1(U) = \partial \varphi_2(W) = s$ and the flows φ_1 and $-\varphi_2$ can be "pieced together" into nowhere-zero \mathbb{Z}_5 -flows in G' and G, a contradiction. Thus $F_{H',U}(s)F_{I',W}(s) = 0$ for every $s \in S_n$. Since $S_H = \{s \in S_n; F_{H',U}(s) > 0\}$, we have $F_{I',W}(s) = 0$ for every $s \in S_H$.

By Lemma 1, there exist integers x_1, \ldots, x_{p_n} such that for every $s \in S_n$, $F_{I',W}(s) = \sum_{i=1}^{p_n} c_{s,i} x_i$ where $(c_{s,1}, \ldots, c_{s,p_n}) = \chi_n(s)$. Choose n-tuples t_1, \ldots, t_r from S_H so that $\chi_n(t_1), \ldots, \chi_n(t_r)$ form a basis in $V_H = V_n$. Then for every $s \in S_n$, there are numbers $y_{s,1}, \ldots, y_{s,r}$ such that $\chi_n(s) = \sum_{j=1}^r y_{s,j} \chi_n(t_j)$ and, therefore, $F_{I',W}(s) = \sum_{i=1}^{p_n} c_{s,i} x_i = \sum_{i=1}^{p_n} (\sum_{j=1}^r y_{s,j} c_{t_j,i}) x_i = \sum_{j=1}^r y_{s,j} (\sum_{i=1}^{p_n} c_{t_j,i} x_i) = \sum_{j=1}^r y_{s,j} F_{I',W}(t_j) = 0$ (because $t_1, \ldots, t_r \in S_H$). Thus $F_{I',W}(s) = 0$ for every $s \in S_n$.

Choose an edge e of H and consider the cubic graph G'' homeomorphic with G-e. G'' is bridgeless (because G is 3-connected) and has a nowhere-zero \mathbb{Z}_5 -flow (because G is a smallest counterexample to the 5-flow conjecture). This implies that $F_{I',W}(s) > 0$ for some $s \in S_n$, a contradiction. Thus H cannot be a subgraph of G.

We give a recursive formula for computing p_n . If $\{Q_1, \ldots, Q_r\} \in \mathcal{P}_n$ and $n \in Q_j$, then $|Q_j| \in \{2, \ldots, n-2, n\}$. For $i = 2, \ldots, n-2$ (resp. i = n), \mathcal{P}_n contains exactly $\binom{n-1}{i-1}p_{n-i}$ (resp. 1) partitions such that the element n is contained in an i-element subset. Hence for any $n \geq 2$, we have (see also [12])

(1)
$$p_n = 1 + \sum_{i=2}^{n-2} {n-1 \choose i-1} p_{n-i}.$$

Let \mathcal{A} denote the automorphism group of \mathbb{Z}_5 . The elements of \mathcal{A} are $\alpha_0 = \mathrm{id}$, $\alpha_1 = (1, 2, 4, 3)$, $\alpha_2 = (1, 4)(2, 3)$ and $\alpha_3 = (1, 3, 4, 2)$. If $s = (s_1, \ldots, s_n) \in S_n$

and $\alpha \in \mathcal{A}$, then denote $\alpha(s) = (\alpha(s_1), \dots, \alpha(s_n)) \in S_n$. We say that s and $\alpha(s)$ are σ_n -equivalent. Clearly, $\chi_n(s) = \chi_n(\alpha(s))$ and $F_{U,G}(s) = F_{U,G}(\alpha(s))$ for any simple network (G,U) with n outer vertices (because if φ is a nowhere-zero \mathbb{Z}_5 -flow in (G,U), then so is $\alpha(\varphi)$).

Let $a_n = |S_n|/4$ be the number of σ_n -classes and t_1, \ldots, t_{a_n} be pairwise non σ_n -equivalent elements of S_n . Let M_n be the $a_n \times p_n$ matrix so that the *i*-th row of M_n is $\chi_n(t_i)$, $i = 1, \ldots, a_n$. Note that the rowspace V_n of M_n does not depend on the choice of t_1, \ldots, t_{a_n} .

Let $a_H = |S_H|/4$. Without loss of generality we can suppose that t_1, \ldots, t_{a_H} are elements of S_H . Thus S_H contains all $s' \in S_n$ which are σ_n -equivalent to $s \in \{t_1, \ldots, t_{a_H}\}$. Let M_H be the $a_H \times p_n$ submatrix of M_n so that the *i*-th row of M_H is $\chi_n(t_i)$, $i = 1, \ldots, a_H$. Note that the rowspace V_H of M_H does not depend on the choice of t_1, \ldots, t_{a_H} . Clearly, $V_H = V_n$ if and only if M_H and M_n have the same rank. Thus the following statement is a more convenient reformulation of Lemma 2 in matrix terms.

Lemma 3. If the matrices M_H and M_n have the same rank, then H cannot be a subgraph of a smallest counterexample to the 5-flow conjecture.

Clearly $a_1 = 0$ and $a_2 = 1$. Furthermore, S_n has exactly $4|S_{n-2}|$ $(3|S_{n-1}|)$ n-tuples so that the sum of the last two elements is zero (nonzero). Thus $|S_n| = 4|S_{n-2}| + 3|S_{n-1}|$, whence $a_n = 4a_{n-2} + 3a_{n-1}$ for any $n \ge 3$. Therefore $a_5 = 51$, $a_6 = 205$, $a_7 = 819$, $a_8 = 3277$. By (1), we get that $p_5 = 11$, $p_6 = 41$, $p_7 = 162$, $p_8 = 715$.

Let C_n be the circuit (connected 2-regular graph) of order $n \ge 2$. It is easy to check that $S_{C_n} = S_n$, whence $V_{C_n} = V_n$ for any $n \le 4$ (see, e.g., [7]). Using computer we can check that $a_{C_5} = 45$, $a_{C_6} = 151$, $a_{C_7} = 483$, $a_{C_8} = 1513$ and that the rank of M_{C_n} equals the rank of M_n for $n = 5, \ldots, 8$. More precisely, the rank of M_n is 11, 40, 147, 568 if n = 5, 6, 7, 8, respectively. Thus, by Lemma 3, the following statement holds true.

Theorem 4. The smallest counterexample of the 5-flow conjecture has girth at least 9.

In order to compute the ranks of M_{C_n} and M_n , we first create p_n permutations from \mathcal{P}_n , then a_n non σ_n -equivalent elements from S_n such that the first a_{C_n} elements are from S_{C_n} , and finally we can create rows of M_n . Now it suffices to modify the Gaussian elimination method so that we subsequently create rows of M_n during the computation and transform M_n to upper triangular form. This modification helps to save the space, because in any stage, we need the present row of M_n together with previous rows forming a maximal independent set. In such a way we check whether all rows of

 M_n linearly depend on the rows from M_{C_n} . We have computed this problem on different personal computers using Maple 5 and Maple 6 programming languages. Note that the program runs several minutes for n=7, but several hours for n=8 (M_7 and M_8 are matrices of orders 819×162 and 3277×715 , respectively).

One would expect that using very strong computers we can apply similar program also for $n \ge 9$. But it would be more interesting to develop more sophisticated methods, which do not use numerical computation, and can be applied for every $n \ge 9$. Really, if we give an affirmative answer to the following question, then we get a solution of the 5-flow conjecture.

Problem 5. Is $V_{C_n} = V_n$ for every $n \ge 2$?

References

- U. A. CELMINS: On cubic graphs that do not have an edge-3-colouring, Ph. D. Thesis, Dep. of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada, 1984.
- [2] R. ISAACS: Infinite families of nontrivial trivalent graphs which are not Tait colorable, Amer. Math. Monthly 82 (1975), 221–239.
- [3] F. JAEGER: Nowhere-zero flow problems, in L. W. Beineke, R. J. Wilson (Eds.), Selected topics in Graph Theory 3, Academic Press, New York, 1988, pp. 71–95.
- [4] M. KOCHOL: Constructions of cyclically 6-edge-connected snarks, Tech. Rep. TR-II-SAS-07/93-05, Institute for Informatics, Slovak Academy of Sciences, Bratislava, Slovakia, 1993.
- [5] M. KOCHOL: Snarks without small cycles, J. Combin. Theory Ser. B 67 (1996), 34–47.
- [6] M. KOCHOL: A cyclically 6-edge-connected snark of order 118, Discrete Math. 161 (1996), 297–300.
- [7] M. KOCHOL: Hypothetical complexity of the nowhere-zero 5-flow problem, J. Graph Theory 28 (1998), 1–11.
- [8] M. KOCHOL: Cubic graphs without a Petersen minor have nowhere-zero 5-flows, Acta Math. Univ. Comenian. (N. S.) 68 (1999), 249–252.
- [9] M. Kochol: Superposition and constructions of graphs without nowhere-zero k-flows, European J. Combin. 23 (2002), 281–306.
- [10] M. KOCHOL: Constructions of graphs without nowhere-zero flows from Boolean formulas, Ars Combin. 70 (2004), 257–264.
- [11] M. KOCHOL: Reduction of the 5-flow conjecture to cyclically 6-edge-connected snarks, J. Combin. Theory Ser. B 90 (2004), 139–145.
- [12] M. KOCHOL: Decomposition formulas for the flow polynomial, European J. Combin., (to appear).
- [13] W. T. Tutte: A contribution to the theory of chromatic polynomials, Canad. J. Math. 6 (1954), 80-91.
- [14] W. T. Tutte: A class of Abelian groups, Canad. J. Math. 8 (1956), 13–28.
- [15] C.-Q. Zhang: Integral Flows and Cycle Covers of Graphs, Dekker, New York, 1997.

Martin Kochol

MÚ SAV Štefánikova 49 814 73 Bratislava 1 Slovakia kochol@savba.sk and

FPV ŽU v Žiline